流量計とシステムソリューションのオーバル

CALIBRATION

臨界ノズルの原理と使用方法

臨界ノズルの持つ経緯

臨界ノズルは、気体の流れの音速域(臨界流)の性質を利用した、高い精度と再現性を持つ流量計です。その高い再現性により臨界ノズルは多くの国々において国家流量標準器として用いられておりますが、臨界ノズルの校正には独自の設備が必要とされる事から広く普及する迄には至っておりませんでした。
しかしながら、近年、ガスの高精度流量計測の必要性から、臨界ノズルに対する要求も高まり、ISO制定(初版1990年・ISO9300)、JIS制定(2006年・JIS Z8767)と相次いで規格化が進んだ事から、今後は臨界ノズルのより一層の普及が期待されます。
幸いOVALでは、以前より臨界ノズルの校正技術を有しておりました事から、製品名「SVメータ」としてその普及に努めてまいりましたが、2006年度に国家計量標準機関監査の基に、弊社所有の臨界ノズル校正設備と校正技術に対する評価試験が実施され、その結果OVALは校正事業者としてJCSS認定(※1を取得する事が出来ました。

今日迄幸いにして、弊社が臨界ノズルへの独自技術と校正品質を培って来られた事は、偏にユーザーの皆様から弊社に戴きましたSVメータへの御愛顧の賜物であり、そのお陰で、新たにJCSS認定という形での技術的証明も戴けた物と認識し、今後もOVALは、より一層の臨界ノズルの発展に微力を尽くす所存です。

臨界ノズルの形状

前頁の臨界ノズルの基本構造を御覧戴ければ、ノズルの形状が Laval nozzle(流れを一旦絞った後、拡大された管)である事が判ります。
臨界ノズル内の最小断面積部(図ではφD の箇所)の名称は「スロート部」と称され、臨界ノズルを通過する流量値が決定される重要な部位となります。図中でφD strと標記された寸法は、臨界ノズル自体の寸法ではなく、臨界ノズルの上流側に設けられる整流管の内部径を示しています。

臨界ノズルの代表的な形状の図

第1図 臨界ノズルの基本構造

臨界ノズルの測定原理

臨界ノズルの流量測定の基本原理となる臨界現象とは、以下の様な現象を示します。
流体が流れている管路が有り、その管路内に絞りが有ったとします。流れる流体は、その絞りの箇所で流速が加速される事となります。身近な現象としては、川の流れを思い浮かべて戴き、川幅が狭い所では流れが速くなり、川幅が広くなるに従って流れも緩やかになる事が代表的な事例と言えるでしょう。これと同様に、気体が流れる配管内に前述の様な Laval nozzle を設けても同じ現象を生じます。

臨界ノズルと真空吸引の図

第2図 臨界ノズルと真空吸引

それでは、この Laval nozzle=臨界ノズルを設けた配管内で、更に流量を多く流す為、配管出口に真空ポンプを設けて気体を引き込む事とします(第2図)。
真空ポンプの稼働出力上げていけば、臨界ノズル下流側は減圧が進み、臨界ノズルの絞り=スロート部を流れる流速もどんどん増していき、ついには音速に達する事となります。この音速に到達した状態が臨界状態と呼ばれています。この音速に達した(臨界状態)後は、いくらノズル下流側の圧力を下げていっても、スロート部を通過する流速は音速以上にはなりません。スロート部を通過する流速は音速に固定されるのです(第3図)。

差圧-流速線図の図

第3図 差圧-流速線図

それでは何故、スロート部を通過する流速は音速以上にはならないのでしょうか?それは流体の流れの特質は、音速を境にして変化する性質を有する為です(第4図)。

等エントロピ流れでの流速の変化のグラフ

第4図 等エントロピ流れでの流速の変化

音速より遅い状態を亜音速、音速より速い状態を超音速と称します。
亜音速の流れの特質は冒頭に述べた川の流れに代表される特性を示すのですが、超音速域での流れの特質は真逆を示し、管路が狭まるに従って流速は遅くなり、管路が広がれば流速は増加するのです。この現象は此処では省略しますが、質量保存則=連続の式で説明する事が出来ます。

具体的な臨界ノズル内の流速変化を下記の第5図で説明します。
ノズルが臨界状態にある気体の流れは、初めは亜音速状態である流れが入口R部で加速され、熱エネルギーを運動エネルギーへと変換しつつスロート部で音速となり、更にスロート部出口の拡大管によって超音速にまで加速されます。
しかし拡大管を進むにつれて、流体は超音速を維持出来ずに衝撃波を生じて亜音速流れとなってしまいます。この超音速域がノズルの上流側と下流側間に介在する事が、流速を司る圧力と温度の伝播を遮断します。つまり圧力の伝播速度は音速以下である事から、幾らノズル下流側の圧力を降下させても、超音速域を超えて上流側に伝わる事はありません。

臨界ノズルの原理

第5図 臨界ノズルの原理

この臨界状態を発生させる為に必要な条件は理論的に求められており、絞りの前後の圧力比が空気では約0.53以下の時に生じる事が知られています。
このノズルが臨界状態であればスロート部の通過速度が音速に固定されるという条件から、臨界状態でのノズルを通過する流量は、「スロート部断面積」×「スロート部環境下での音速」で求められる事が判ります。その値は、気体の種類、及びノズルの幾何学的な形状、ノズル上流部の気体の状態で決定される為、ノズル上流部の気体の状態さえ安定しておれば、その流量は非常に安定したものとなる訳です。
しかし、実際の気体の流れには気体の持つ粘性が影響を与える為、音速で流れるスロート部壁面近傍には境界層が形成される事となります(第6図)。

ノズル壁面に生ずる境界層内速度分布

第6図 ノズル壁面に生ずる境界層内速度分布

このスロート部の境界層を速度分布として分解すれば、壁面では速度零、壁面より一番遠い箇所では音速という分解が出来ます。従って、境界層の部分の流れは音速には達していないので、実際にスロート部を通過する実際の流量値は、先に述べた「スロート部断面積」×「スロート部環境下での音速」から求めた理論流量値よりも少なくなる訳です。この「実流量値」を「理論流量値」で割った値、つまり補正係数である訳ですが、これを「流出係数」と称します。従って、臨界ノズルを使用する為には、事前に理論流量値を求める為のスロート径と、これを補正する流出係数を知っておく必要が有るという事になります。

流出係数は先にも述べた通り、スロート部に発生する境界層の係数でありますので、「レイノルズ数」の関数として現すことが出来ます。これは、境界層の厚さがレイノルズ数によって変化する為であり、臨界ノズルの校正試験を行う者は、レイノルズ数を色々変化させた際の流出係数を実測すれば、レイノルズ数を関数とした流出係数を求める式が得られる訳です。
このレイノルズ数を関数として臨界ノズルの流出係数を求める方程式は、諸研究機関の試験データを集約解析した結果を基に、JIS(ISO)で定められておりますので、ユーザーが実際に臨界ノズルを使用するにあたっては、臨界ノズルの校正事業者に対して、臨界ノズルの校正結果から得られた、「α」、「β」で提示される「ノズル定数」の提出を求めれば良いシステムとなっております。

 

校正事業者より提出される臨界ノズル校正証明書(見本)

第7図-1 校正事業者より提出される臨界ノズル校正証明書(見本)

校正事業者より提出される臨界ノズル校正証明書(見本)

第7図-2 校正事業者より提出される臨界ノズル校正証明書(見本)

JCSSとは

JCSSは、Japan Calibration Service Systemの略称であり、校正事業者登録制度を示します。本登録制度は校正事業者に対し、認定機関が国際標準化機構及び国際電気標準会議が定めた校正機関に関する基準(ISO/IEC 17025)の要求事項に適合しているかどうか審査を行い、要求を満たした事業者を登録する制度です。登録を受けた校正事業者に対しては検定機関が、品質システム、校正方法、不確かさの見積もり、設備などが校正を実施する上で適切であるかどうか、定められたとおり品質システムが運営されているかを書類審査、及び現地審査を行う事で確認済みですので、登録校正事業者が発行するJCSS校正証明書は、日本の国家計量標準へのトレーサビリティが確保された上で、十分な技術、技能で校正が行われたことが保証されます。

臨界ノズルを用いた測定

臨界ノズルは単体のままでは、実流量値を求めることは出来ませんが、前述の通り臨界ノズルのスロート径と、ノズル定数(流出係数)が事前に明らかになれば、臨界ノズル前段の圧力、温度、そして流体が湿りガスの場合には湿度も計測し、演算する事により、標準器として流体の Actual流量値を高精度に求めることが出来る様になります。
つまり臨界ノズルを用いて実際に流量を計る場合には、圧力、温度、場合によっては湿度と言う三つの測定値から流量を計算して求める訳ですので、これら測定値の精度で流量測定結果の精度が決定されてしまう事になります。その為、ISO(JIS)では圧力、及び温度の測定方法が定められており、特に圧力測定口の形状は詳細に規定されております。臨界ノズルを用いて計測した流量値を第三者に提示する場合には、この測定方法に準拠する必要があります。
以下にISO(JIS)で規定された臨界ノズルの使用条件を基とした、臨界ノズルを用いた他の流量計の校正例を第8図として示します。

臨界ノズルの使用条件

第8図 臨界ノズルの使用条件

臨界ノズルは此処に示される様に、ノズル入口の淀み点圧力と温度を測定する事で通過流量を求めます。但し先の測定原理で述べた通り、流量を求める為にはスロート部における断面積と音速値から求める事となりますので、音速値を求める為に本来であればスロート部での圧力と温度を計る必要が生じます。ノズル入口で計った淀み点圧力及び温度の値では、スロート部における圧力と温度の値とは大きく値が異なっております。
これは先の測定原理中にあった、ノズル入口の流れが亜音速から音速へと加速の際に熱エネルギーが運動エネルギーに変換される為、スロート部での気体の温度と圧力が下がる事に起因します。
これをISOにおける臨界ノズルの使用規定では、実現が難しいスロート部における圧力と温度の測定に替わるものとして、第8図の様にノズル入口の淀み点圧力と温度を測定する事とし、これを臨界流れ関数(critical flow function)と呼ばれる関数値でスロート部における測定値に換算を行うものとしております。このことがISOにおいて臨界ノズル入口での圧力及び温度の測定方法が詳細に規定される事と成った理由なのです。

臨界ノズルを用いた校正システム

臨界ノズルは御存知の通り、一定圧力と温度条件下においては1本のノズルでは、1点の固定流量値しか発生させる事が出来ない為、異なる流量値を持ったノズルを組み合わせて使われるのが一般的です。その例を第9図に示します。
又、複数の臨界ノズルと整流管を組み合わせた製品例を写真1に示します。

 

臨界ノズルを用いた校正システム

第9図 臨界ノズルを用いた校正システム

オーバル形臨界ノズル専用チャンバー

写真1 オーバル形臨界ノズル専用チャンバー

おわりに

現代では計量機関は基より一般企業に至るまで、測定結果には計量トレーサビリティ体系に基づいた精度保証が求められております。その為には測定値の不確かさを明確にすることが必要不可欠なものとなりました。一方、日常、気体の流量計測に携わっている方々は、気体の流量計測を正確に行うことがいかに難しいか、経験されていることと思われます。
臨界ノズルが計量トレーサビリティ体系を構築する為の気体用流量標準として、最適な特性を有している事を御存知にも拘わらず、他の流量計とは異なる特性や原理、流量標準システムとしての構築方法が判りづらかった為、臨界ノズルの導入にためらわれていた皆様に対し、本稿が御参考となれば幸いでございます。

校正事業トップに戻る