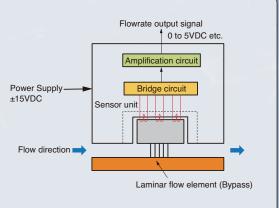


Thermal Mass Flowmeter/ Controller for Gas MASFLO-OVAL II

[Measurement principle]


The gas introduced into the meter is divided into the sensor unit at a constant proportion by laminar flow element.

Inside the sensor unit, a heater coil and temperature sensors loop around the capillary in the center and both ends, respectively. These temperature sensors constitute the bridge circuit.

When the gas that flows through the sensor unit remains still, heat supplied from the heater is transferred to the temperature sensors on both sides equally and the balance of the bridge circuit is maintained.

However, once the gas starts to flow, the difference occurs in the heat transferred to the temperature sensors, and an output proportional to the mass flowrate is obtained from the bridge circuit.

By changing the branch-off proportion in the laminar flow element, the desired flowrate range can be obtained.

Measure/Control accurately the flowrate of gas on a mass basis

FHA is a high accuracy, compact gas flow meter

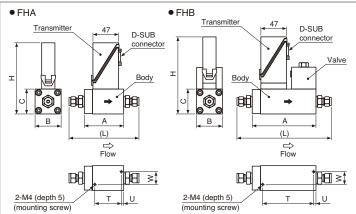
FHB is a flowrate controller that FHA is integrated with a control valve (electromagnetic type)

- Applicable to a wide range of flowrate, from 5NCCM (mL/min [normal]) to 500NLM (L/min [normal])
- Optimal full-scale adjustment is available with the laminar flow element
- Applicable to the most types of gas, except for high corrosive gas
- Fast response
- The control valve is of a normal close, electromagnetic type that ensures fast response and safe to use
- Compatible with a variety of applications by combining with the readout unit

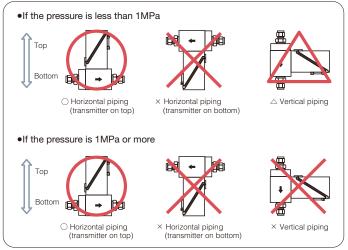
STANDARD SPECIFICATIONS

		FHA	FHB				
Constructi	ion	Non-explosionproof, for indoor use					
Connectin		1/8", 1/4", 3/8",	1/8", 1/4", 3/8",				
outer diam	neter	6mm, 12mm, 1/2"	6mm				
Accuracy (including		± 1% of FS (at actual gas calibration)					
Reproduci	ibility	± 0.2% of FS					
Response	I	1 to 3sec (time constant)	1 to 2sec (within ±2% of setting, except for during zero startup)				
Operating ter	mperature range	-10 to +70°C (no condensation)					
Temperatu	ure effect	± 0.1%/°C of FS					
Pressure e	effect	0.1%/0.1MPa of RD (N2), 0.01%/0.1MPa of RD (H2)					
Pressure I	oss (Air) (*2)	3.5 to 10.5 kPa					
Zero stability		Long-term error: Max. 1%/year, Temperature drift: 0.05%/°C					
	Body	Major parts: SUS316 or equivalent					
Materials	Seal	Fluoro-rubber (FKM): standard, Chloroprene rubber (CR),					
	000	Perfluoroelastomer (FFKM)					
Power sup	oply	±15VDC					

 *1: Under normal circumstances, calibration is conducted using air or nitrogen gas with conversion factor compensation.
 *2: Only for the body of the mass flowmeter; pressure loss for joint is excluded.


FLOW RANGE/MAX OPERATING PRESSURE

FHA


Evillation for the second	Model code							
Full scale flow range NL/min (at Air)	Maximum operating pressure (*1)							
	0.99MPa	9.8MPa	19.6MPa	39.2MPa				
Minimum 0.0001 to 0.005	FHA00S	FHA10S	FHA20S	FHA30S				
Maximum 0.00015 to 0.0075	THAOUS	THAT05	TTAZUS	111A303				
Minimum 0.00015 to 0.0075	FHA01S	FHA11S	FHA21S	FHA31S				
Maximum 0.3 to 15	THAUIS	THATIS	THAZIS	111/010				
Minimum 0.3 to 15		FHA12S	FHA22S	FHA32S				
Maximum 2 to 100		TTIAT25	TTAZZO	FRA525				
Minimum 2 to 100		FHA13S	FHA23S	FUADOO				
Maximum 10 to 500		FRA135	FRAZ35	FHA33S				
Maximum 10 to 500				111/000				

*1: Maximum operating pressure may be lower depending on connection specification.

DIMENSIONS [Unit: mm]

PHYSICAL ORIENTATION

• FHB

	Mode			
Full scale flow range NL/min (at Air)	Maximum oper	rating pressure	Kv value	
NE/min (at Air)	9.8MPa	19.6MPa		
Minimum 0.00015 to 0.0075	FHB11S	FHB21S	7 1.1×10⁻⁵ to 6.6×10⁻²	
Maximum 0.3 to 15	THEFTS	1110213		
Minimum 0.3 to 15				
Maximum 1.4 to 70	FHB12S			
Up to 100NL/min available with H ² and Helium				

*1: Maximum operating pressure may be lower depending on connection specification and Kv value of valve.

*2: If Kv value is 4.3 × 10⁻³ or more, maximum operating pressure is restricted at 10MPa.

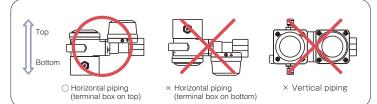
$\overline{\ }$	MODEL	А	В	с	н	(L)	т	U	w	Body internal thread	Weigh (kg)
	FHA00S/10S					00	37	5	16		
FHA	FHA20S/30S		25	25	111	98				111 04/4	
	FHA01S/11S	47				103				IN: G1/4 OUT: G1/8	0.3
	FHA21S/31S	1								001.01/8	
	FHA12S	72	46	46	132	129	47	5	21	G1/4	1.2
	FHA22S/32S	91	65	65	151	148	50	5	23	G1/4	2.9
	FHA13S	108	66	66	152	176	75	5	28	G1/2	3.1
	FHA23S/33S	135	101	101	187	202	75	5	40	G1/2	9.1
EUD	FHB11S/21S 102		45	45	142	159	92	5	21	G1/4	2.0
FHB	FHB12S	117	46	46	143	174	92	5	21	G1/4	2.1

MASFLO-OVAL II MODEL: FHC/FHD Explosionproof

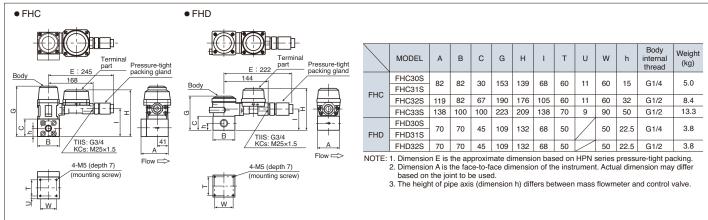
Explosionproof structure which can be used for hydrogen gas

FHC is the hydrogen gas explosionproof model of FHA, the general-purpose mass flowmeter for gas. It can be supplied as the certified product for the high pressure gas.

FHD is based on FHB with the control valve in the hydrogen explosionproof structure. In combination with FHC, it makes up of the explosionproof mass flowrate controller for gas.


- JIS explosionproof construction model "d3aG4", that is applicable to hydrogen gas
- Applicable to a wide range of operating pressure, from vacuum to 36.2MPa at the maximum
- Applicable to a wide range of flowrate, from 5NCCM (mL/min [normal]) to 500NLM (L/min [normal])
- Optimal full scale adjustment is available with laminar flow element
- Applicable to the most types of gas, except for high corrosive gas
- The control valve is of a normal close, electromagnetic type that ensures fast response and safe to use
- Compatible with a variety of applications by combining with the readout unit

STANDARD SPECIFICATIONS


		FHC FHD					
Construct	ion	Explosionproof configuration (TIIS, KCs)					
Connectin	g tube	1/8", 1/4", 3/8", 3/4",	1/8", 1/4", 3/8",				
outer dian	neter	6mm, 12mm, 1/2"	6mm, 12mm, 1/2"				
Accuracy (including		± 1% of FS (at actual gas calibration)					
Reproduc	ibility	± 0.2% of FS					
Response		1 to 3sec (time constant) 1 to 2sec (within ±2% of set except for during zero start					
Operating te	emperature range	-10 to +50°C (due to explosionproof configuration) (no condensation)					
Temperatu	ure effect	± 0.1%/°C of FS					
Pressure	effect	0.1%/0.1MPa of RD (N2), 0.01%/0.1MPa of RD (H2)					
Pressure	loss (Air) (*2)	3.5 to 10.5 kPa					
Zero stabi	lity	Long-term error: Maximum 1%/year, Temperature drift: 0.05%/°C					
	Body	Major parts: SUS316					
Materials	Housing	AC4C-T6					
materials	Seal	Fluoro-rubber (FKM): standard, Chloroprene rubber (CR), Perfluoroelastomer (FFKM)					
Deveren	amhr						
Power sup		±15VDC					

*1: Under normal circumstances, calibration is conducted using air or nitrogen gas with conversion factor compensation.
*2: Only for the body of the mass flowmeter; pressure loss for joint is excluded.

PHYSICAL ORIENTATION

DIMENSIONS [Unit: mm]

FLOW RANGE/MAX OPERATING PRESSURE

Full scale flow range	Mode	Kv value	
NL/min (at Air)	Maximum operating	itv value	
Minimum 0.0001 to 0.005	FHC30S	FHC30S + FHD30S	
Maximum 0.00015 to 0.0075	FHC303	FHC303 + FHD303	1.1×10⁻⁵
Minimum 0.00015 to 0.0075	FHC31S	FHC31S + FHD31S	
Maximum 0.3 to 15	FIC313	FH0315 + FH0315	to 6.6×10 ⁻²
Minimum 0.3 to 15	FHC32S	FHC32S + FHD32S	
Maximum 2 to 100	FR0325	FHU325 + FHU325	
Minimum 2 to 100	FHC33S		
Maximum 10 to 500	FII0332		

*1: Maximum operating pressure may be lower depending on connection specification and Ky value of valve.

*2: FHC series can be supplied as the certified product for the high pressure gas (Approved range is the body only. Detachable parts, such as double ferrule bite-type fitting, are not included.)

*3: FHD series functions as control valve by combining with FHC series. FHD cannot be used by itself.

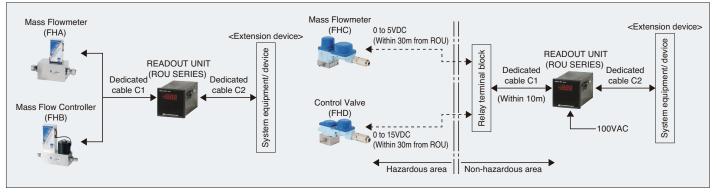
*4: FHD series is available only if both full scale flow range and Ky value of valve are satisfied. *5: If Kv value is between 4.3 × 10⁻³ and 6.6 × 10⁻², maximum operating pressure is restricted at 10MPa

READOUT UNIT MODEL: ROU00 SERIES Receiving Instrument for MASFLO-OVAL II

- •DIN-sized (except for ROU06A) compact and lightweight receiving instruments. Provided with all the basic capabilities required for measurement and control
- Equipped with 0 to 5VDC external output as the standard specifications. ROU00C, the high-end model, has a built-in analog converter and is applicable to 1 to 5VDC, 0 to 20mADC and 4 to 20mADC
- •Combined with MASFLO-OVAL II series, flow measurement/ control system can configure easily in laboratories, experimental equipment, etc.
- Quick delivery and affordable price

MODEL/ CONFIGURATION

Function	±15V				Conversion	External		Connecti	ng instruments	
	±15V DC			Set-point		control	Signal	MASE	LO-OVALII	
	Power	Display	Totalizer	adjuster	setter	input	converter	Sensor	Controller	Description of the model
Model	output				(*1)	compatibility	(*2)	FHA FHC	FHB FHC+FHD	
ROU01A	0	—	—	—	—	0	—	0	0	Supplies power to MASFLO-OVAL II. Equipped with flow input/output.
ROU02A	0	0	-	-	—	—	_	0	—	Equipped with flow display.
ROU03A	0	0	_	0	_	—	_	-	0	Equipped with flow display and set-point adjuster.
ROU04A	0	0	—	-	0	—	—	0	—	Conversion factor setter added to ROU02A.
ROU05A	0	0	_	0	0	—	_	_	0	Conversion factor setter added to ROU03A.
ROU06A	0	_	_		—	0	_	0	0	Provides power to up to 4 MASFLO-OVAL II. Capable of flow input/output.
ROU07A	0	0	0		—	—	_	0	—	Totalizer and pulse output added to ROU02A.
ROU08A	0	0	0	0	—	—	_	_	0	Totalizer and pulse output added to ROU03A.
ROU01C	0	_	—	-	—	0	0	0	0	Analog signal converter added to ROU01A.
ROU02C	0	0	—	-	_	—	0	0	—	Analog signal converter added to ROU02A.
ROU03C	0	0	_	0	_	0	0	-	0	Analog signal converter and remote control (external setting input) added to ROU03A.
ROU07C	0	0	0	_	_	—	0	0	_	Analog signal converter added to ROU07A.
ROU08C	0	0	0	0	_	0	0	—	0	Analog signal converter and remote control (external setting input) added to ROU08A.
ROU03S	0	0	_	0	_	0	_	—	0	Equipped with flow display, set-point adjuster, and external setting input.
ROU05S	0	0	—	0	0	0	_	—	0	Conversion factor setter added to ROU03S.


Each MASELO-OVAL II requires an BOU series with the exception of BOU06A. Up to 4 instruments can be connected to BOU06A.

Analog input/output circuit and pulse output circuit of the ROU series are not isolated. For use of external input/output, connection should be made through an analog isolator as necessary. (*1): If conversion factor needs to be set arbitrarily, models with conversion factor setter should be selected.

(Refer to the general specification sheet of MASFLO-OVAL II for the details of conversion factor.)

(#2): Signal converter is capable of converting between 4 types of analog signal: 0 to 5VDC, 1 to 5VDC, 0 to 20mADC, and 4 to 20mADC.

CONNECTION WITH A READOUT UNIT

• The specification as of August, 2021 is stated in this catalog. Specifications and design are subject to change without notice.

• All content of this catalog is copyrighted by OVAL Corporation. Any reproduction, partial or whole, of the content without permission from OVAL is strictly prohibited.

OVAL Corporation

3-10-8 Kamiochiai, Shinjuku-ku, Tokyo 161-8508 Phone: +81 3-3360-5121 FAX: +81 3-3365-8605 9001 14001 JCSS

https://www.oval.co.jp/english